Prognoser genom utjämningstekniker Den här webbplatsen är en del av JavaScript E-labs lärande objekt för beslutsfattande. Övriga JavaScript i denna serie kategoriseras under olika tillämpningsområden i MENU-sektionen på den här sidan. En tidsserie är en följd av observationer som beställs i tid. Inhämtande i insamlingen av data som tagits över tiden är någon form av slumpmässig variation. Det finns metoder för att minska avbrytandet av effekten på grund av slumpmässig variation. Bredt använda tekniker är utjämning. Dessa tekniker, när de tillämpas korrekt, avslöjar tydligare de underliggande trenderna. Ange tidsserierna Row-wise i följd, från början till vänster och parametrarna, och klicka sedan på knappen Beräkna för att få fram en prognos för en period framåt. Blanka rutor ingår inte i beräkningarna men nollor är. När du matar in data för att flytta från cell till cell i datmatrisen använder du inte knappen Tab eller pilar in. Funktioner av tidsserier, som kan avslöjas genom att granska dess graf. med de prognostiserade värdena och restbeteendet, förutsatt prognosmodellering. Flyttande medelvärden: Flyttande medelvärden rankas bland de mest populära teknikerna för förbehandling av tidsserier. De används för att filtrera slumpmässigt vitt brus från data, för att göra tidsserierna mjukare eller till och med för att betona vissa informationskomponenter som ingår i tidsserierna. Exponentiell utjämning: Detta är ett mycket populärt schema för att producera en slät Time Series. Medan i rörliga medelvärden viktas de senaste observationerna, exponentiell utjämning tilldelar exponentiellt minskande vikter som observationen blir äldre. Med andra ord ges de senaste observationerna relativt större vikt vid prognosen än de äldre observationerna. Dubbel exponentiell utjämning är bättre vid hantering av trender. Trippel exponentiell utjämning är bättre vid hantering av paraboltrender. Ett exponentiellt vägat glidande medelvärde med en utjämningskonstant a. motsvarar ungefär ett enkelt rörligt medelvärde av längd (dvs period) n, där a och n är relaterade till: a 2 (n1) ORn (2-a) a. Således skulle exempelvis ett exponentiellt vägt glidmedel med en utjämningskonstant lika med 0,1 motsvara ungefär ett 19 dagars glidande medelvärde. Och ett 40-dagars enkelt rörligt medelvärde skulle motsvara ungefär ett exponentiellt vägt rörligt medelvärde med en utjämningskonstant lika med 0,04878. Håller linjär exponentiell utjämning: Antag att tidsserierna är säsongsbetonade men visar visningstendens. Holts metod beräknar både nuvarande nivå och nuvarande trend. Observera att det enkla glidande medlet är ett speciellt fall av exponentiell utjämning genom att ställa in perioden för glidande medelvärde till heltalet av (2-alfa) alfa. För de flesta företagsdata är en Alpha-parameter som är mindre än 0,40 ofta effektiv. Man kan emellertid utföra en nätverkssökning av parameternummet, med 0,1 till 0,9, med steg om 0,1. Då har den bästa alfas det minsta genomsnittliga absoluta felet (MA-fel). Hur man jämför flera utjämningsmetoder: Även om det finns numeriska indikatorer för bedömning av prognosteknikens noggrannhet, är det mest använda sättet att använda en visuell jämförelse av flera prognoser för att bedöma deras noggrannhet och välja mellan olika prognosmetoder. I detta tillvägagångssätt måste man plotta (med användning av exempelvis Excel) på samma graf de ursprungliga värdena för en tidsserievariabel och de förutspådda värdena från flera olika prognosmetoder, vilket underlättar en visuell jämförelse. Du kanske gillar att använda tidigare prognoser med utjämningstekniker JavaScript för att få de senaste prognosvärdena baserade på utjämningstekniker som endast använder en parameter. Holt - och Winters-metoderna använder sig av två respektive tre parametrar, därför är det inte en lätt uppgift att välja de optimala eller till och med nära optimala värden genom försök och fel för parametrarna. Den enda exponentiella utjämningen betonar det korta perspektivet som ställer nivån till den sista observationen och baseras på förutsättningen att det inte finns någon trend. Den linjära regressionen, som passar en minsta kvadrera linje till historiska data (eller transformerade historiska data), representerar det långa intervallet, vilket är konditionerat för den grundläggande trenden. Hålen linjär exponentiell utjämning fångar information om den senaste trenden. Parametrarna i Holts-modellen är nivåparametrar som bör minskas när datamängden är stor, och trenderparametern bör ökas om den senaste trendriktningen stöds av orsakssambandsfaktorerna. Kortsiktiga prognoser: Observera att varje JavaScript på den här sidan ger en enstegs prognos. För att få en tvåstegs prognos. Lägg helt enkelt till det prognostiserade värdet till slutet av din tidsseriedata och klicka sedan på samma Calculate-knapp. Du kan upprepa denna process några gånger för att få de korta prognoser som behövs. I praktiken ger det glidande medelvärdet en bra uppskattning av medelvärdet av tidsserierna om medelvärdet är konstant eller långsamt förändras. Vid konstant medelvärde kommer det största värdet av m att ge de bästa uppskattningarna av det underliggande genomsnittet. En längre observationsperiod kommer att medeltala effekterna av variationen. Syftet med att tillhandahålla en mindre m är att tillåta prognosen att svara på en förändring av den underliggande processen. För att illustrera föreslår vi en dataset som innehåller förändringar i underliggande medelvärden av tidsserierna. Figuren visar tidsserien som används för illustration tillsammans med den genomsnittliga efterfrågan från vilken serien genererades. Medelvärdet börjar som en konstant vid 10. Börjar vid tidpunkten 21, ökar den med en enhet i varje period tills den når värdet 20 vid tiden 30. Sedan blir det konstant igen. Uppgifterna simuleras genom att lägga till i genomsnitt ett slumpmässigt brus från en normalfördelning med nollvärde och standardavvikelse 3. Resultaten av simuleringen avrundas till närmaste heltal. Tabellen visar de simulerade observationer som används för exemplet. När vi använder bordet måste vi komma ihåg att vid varje given tidpunkt endast endast tidigare data är kända. Uppskattningarna av modellparametern, för tre olika värden på m visas tillsammans med medelvärdet av tidsserierna i figuren nedan. Figuren visar den genomsnittliga rörliga genomsnittliga beräkningen av medelvärdet vid varje tidpunkt och inte prognosen. Prognoserna skulle flytta de glidande medelkurvorna till höger av perioder. En slutsats framgår omedelbart av figuren. För alla tre uppskattningar ligger det rörliga genomsnittet bakom den linjära trenden, där fördröjningen ökar med m. Lagen är avståndet mellan modellen och uppskattningen i tidsdimensionen. På grund av fördröjningen underskattar det rörliga genomsnittet observationerna som medelvärdet ökar. Estimatorns förspänning är skillnaden vid en viss tidpunkt i modellens medelvärde och medelvärdet förutspått av det rörliga genomsnittet. Förspänningen när medelvärdet ökar är negativt. För ett minskande medelvärde är förspänningen positiv. Fördröjningen i tid och den bias som införs i uppskattningen är funktionerna i m. Ju större värdet av m. desto större är storleken på fördröjning och förspänning. För en kontinuerligt ökande serie med trend a. värdena för fördröjning och förspänning av estimatorn för medelvärdet ges i ekvationerna nedan. Exemplet kurvorna stämmer inte överens med dessa ekvationer eftersom exemplet modellen inte ständigt ökar, utan det börjar som en konstant, ändras till en trend och blir sedan konstant igen. Även kurvorna påverkas av bruset. Den glidande genomsnittliga prognosen för perioder i framtiden representeras genom att man ändrar kurvorna till höger. Fördröjningen och förskjutningen ökar proportionellt. Ekvationerna nedan anger fördröjningen och förspänningen av prognosperioder i framtiden jämfört med modellparametrarna. Återigen är dessa formler för en tidsserie med en konstant linjär trend. Vi borde inte bli förvånad över resultatet. Den glidande medelvärdesberäkaren baseras på antagandet om ett konstant medelvärde och exemplet har en linjär trend i medelvärdet under en del av studieperioden. Eftersom realtidsserier sällan exakt kommer att följa antagandena till en modell, bör vi vara beredda på sådana resultat. Vi kan också dra slutsatsen av att variationen i bruset har störst effekt för mindre m. Uppskattningen är mycket mer flyktig för det rörliga genomsnittsvärdet på 5 än det glidande medlet på 20. Vi har de motstridiga önskningarna att öka m för att minska effekten av variationer på grund av bullret och att minska m för att göra prognosen mer mottaglig för förändringar i medelvärdet. Felet är skillnaden mellan den faktiska data och det prognostiserade värdet. Om tidsserierna verkligen är ett konstant värde är det förväntade värdet av felet noll och variansen av felet består av en term som är en funktion av och en andra term som är brusets varians. Den första termen är medelvärdet av det medelvärde som uppskattas med ett urval av m-observationer, förutsatt att data kommer från en population med konstant medelvärde. Denna term minimeras genom att göra m så stor som möjligt. En stor m gör prognosen inte svarande mot en förändring i underliggande tidsserier. För att prognosen ska kunna reagera på förändringar, vill vi ha m så liten som möjligt (1), men detta ökar felvariationen. Praktisk prognos kräver ett mellanvärde. Prognoser med Excel Prognosen för prognoser implementerar de glidande medelformlerna. Exemplet nedan visar analysen som tillhandahålls av tillägget för provdata i kolumn B. De första 10 observationerna indexeras -9 till 0. Jämfört med tabellen ovan förskjuts periodindex med -10. De första tio observationerna ger startvärdena för uppskattningen och används för att beräkna det glidande medlet för period 0. MA (10) kolumnen (C) visar de beräknade glidande medelvärdena. Den rörliga genomsnittsparametern m är i cell C3. Fore (1) kolumnen (D) visar en prognos för en period framåt. Prognosintervallet ligger i cell D3. När prognosintervallet ändras till ett större antal flyttas numren i Fore-kolumnen nedåt. Err-kolumnen (E) visar skillnaden mellan observationen och prognosen. Till exempel är observationen vid tidpunkten 1 6. Det prognostiserade värdet som gjorts från det glidande medlet vid tidpunkten 0 är 11,1. Felet är då -5,1. Standardavvikelsen och genomsnittlig avvikelse (MAD) beräknas i cellerna E6 respektive E7. Flyttande medel - och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga gångmodeller och linjära trendmodeller, icke-säsongsmönster och trender vara extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet på Y vid tiden t1 som görs vid tid t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserien Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2 vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotfoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel konfigurera ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet av L vid tiden t beräknas rekursivt från sitt eget tidigare värde som här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Därför tenderar den enkla glidande medelprognosen att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den placerar relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, vilket visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallet för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan uppskattas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så att denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du 8220eyeball8221 ser den här tomten ser den ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi till exempel väljer att ställa in 946 0,1, är genomsnittsåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortfristiga trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) Exponentiell utjämning Förklarad. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. När människor först möter termen Exponentiell utjämning kan de tro att det låter som ett helvete med mycket utjämning. vad som helst utjämning är. De börjar sedan förutse en komplicerad matematisk beräkning som sannolikt kräver en grad i matematik för att förstå, och hoppas att det finns en inbyggd Excel-funktion tillgänglig om de någonsin behöver göra det. Verkligheten med exponentiell utjämning är betydligt mindre dramatisk och mycket mindre traumatisk. Sanningen är att exponentiell utjämning är en mycket enkel beräkning som ger en ganska enkel uppgift. Det har bara ett komplicerat namn eftersom det som tekniskt händer som ett resultat av denna enkla beräkning är faktiskt lite komplicerad. För att förstå exponentiell utjämning hjälper det till att börja med det allmänna begreppet utjämning och ett par andra vanliga metoder som används för att uppnå utjämning. Vad är utjämning Utjämning är en mycket vanlig statistisk process. I själva verket möter vi regelbundet smidiga data i olika former i våra dagliga liv. Varje gång du använder ett medelvärde för att beskriva något, använder du ett jämnt antal. Om du funderar på varför du använder ett medelvärde för att beskriva något, kommer du snabbt att förstå begreppet utjämning. Till exempel upplevde vi bara den varmaste vintern på rekord. Hur kan vi kvantifiera detta? Nåväl börjar vi med dataset av de dagliga höga och låga temperaturerna för den period som vi kallar Vinter för varje år i inspelad historia. Men det lämnar oss med en massa siffror som hoppar runt ganska lite (det är inte som varje dag i vinter var varmare än motsvarande dagar från alla tidigare år). Vi behöver ett nummer som tar bort allt detta hoppar runt från data så att vi lättare kan jämföra en vinter till nästa. Att hoppa runt i data kallas utjämning, och i det här fallet kan vi bara använda ett enkelt medel för att åstadkomma utjämningen. I efterfrågan prognoser använder vi utjämning för att ta bort slumpmässig variation (brus) från vår historiska efterfrågan. Detta gör det möjligt för oss att bättre identifiera efterfrågan mönster (främst trend och säsong) och efterfråganivåer som kan användas för att uppskatta framtida efterfrågan. Ljudet i efterfrågan är samma koncept som den dagliga hoppningen runt temperaturdata. Inte överraskande är det vanligaste sättet att människor tar bort ljud från efterfrågans historia att använda en enkel genomsnittare, mer specifikt, ett glidande medelvärde. Ett glidande medel använder bara ett fördefinierat antal perioder för att beräkna medelvärdet, och dessa perioder rör sig när tiden går. Om jag till exempel använder ett 4 månaders glidande medelvärde, och idag är den 1 maj, använder jag ett genomsnitt av efterfrågan som inträffade i januari, februari, mars och april. Den 1 juni kommer jag att använda efterfrågan från februari, mars, april och maj. Viktat glidande medelvärde. Vid användning av ett medel tillämpar vi samma vikt (vikt) på varje värde i datasetet. I det 4 månaders glidande genomsnittet representerade varje månad 25 av glidande medelvärdet. När man använder efterfrågan historia för att projektera framtida efterfrågan (och speciellt framtida trend) är det logiskt att dra slutsatsen att du skulle vilja att nyare historia skulle få större inverkan på din prognos. Vi kan anpassa vår glidande medelberäkning för att applicera olika vikter till varje period för att få våra önskade resultat. Vi uttrycker dessa vikter som procentandelar och summan av alla vikter för alla perioder måste öka till 100. Om vi bestämmer att vi vill tillämpa 35 som vikten för närmaste period i vårt 4 månaders vägda glidande medelvärde, kan vi subtrahera 35 från 100 för att hitta att vi har 65 kvar att dela över de andra 3 perioderna. Till exempel kan vi sluta med en viktning på 15, 20, 30 och 35 för de fyra månaderna (15 20 30 35 100). Exponentiell utjämning. Om vi går tillbaka till begreppet att applicera en vikt till den senaste perioden (som 35 i föregående exempel) och sprida den återstående vikten (beräknad genom att subtrahera den senaste vikten av 35 från 100 till 65), har vi de grundläggande byggstenarna för vår exponentiella utjämningsberäkning. Den kontrollerande ingången för exponentiell utjämningsberäkningen är känd som utjämningsfaktorn (kallas även utjämningskonstanten). Den representerar väsentligen den viktning som tillämpas på de senaste perioderna efterfrågan. Så, där vi använde 35 som viktningen för den senaste perioden i den vägda glidande genomsnittliga beräkningen, kunde vi också välja att använda 35 som utjämningsfaktor i vår exponentiella utjämningsberäkning för att få en liknande effekt. Skillnaden med exponentiell utjämningsberäkningen är att istället för att vi måste ta reda på hur mycket vikt som ska tillämpas för varje tidigare period används utjämningsfaktorn för att automatiskt göra det. Så här kommer den exponentiella delen. Om vi använder 35 som utjämningsfaktor kommer vikten av de senaste perioderna att vara 35. Vägningen av de efterföljande senaste perioderna efterfrågar (perioden före senaste) kommer att vara 65 av 35 (65 kommer från att subtrahera 35 från 100). Detta motsvarar 22,75 viktning för den perioden om du gör matematiken. De efterföljande senaste perioderna kommer att vara 65 av 65 av 35, vilket motsvarar 14,79. Perioden före det kommer att vägas som 65 av 65 av 65 av 35, vilket motsvarar 9,61, och så vidare. Och detta går tillbaka genom alla dina tidigare perioder ända till början av tiden (eller den punkt där du började använda exponentiell utjämning för det aktuella objektet). Du tror nog att det ser ut som en hel del matte. Men skönheten i den exponentiella utjämningsberäkning är att snarare än att behöva räkna om mot varje tidigare period varje gång du får en ny period efterfråga, använder du bara utmatningen av exponentiell utjämningsberäkning från föregående period för att representera alla tidigare perioder. Är du förvirrad än? Det här blir mer meningsfullt när vi tittar på den faktiska beräkningen. Vanligtvis hänvisar vi till effekten av exponentiell utjämningsberäkningen som nästa prognos för perioden. I verkligheten behöver den ultimata prognosen lite mer arbete, men i den här specifika beräkningen avses det som prognosen. Exponentialutjämningsberäkningen är enligt följande: De senaste perioderna efterfrågas multiplicerat med utjämningsfaktorn. PLUS De senaste prognoserna multipliceras med (en minus utjämningsfaktorn). D senaste perioder kräver S utjämningsfaktorn representerad i decimalform (så 35 skulle representeras som 0,35). F de senaste perioderna prognos (utmatningen av utjämningsberäkningen från föregående period). ELLER (förutsatt en utjämningsfaktor på 0,35) (D 0,35) (F 0,65) Det blir inte mycket enklare än det. Som vi kan se är allt vi behöver för datainmatningar här de senaste perioderna efterfrågan och de senaste perioderna prognostiseras. Vi tillämpar utjämningsfaktorn (viktning) till de senaste perioderna efterfrågar samma sätt som vi skulle i den vägda glidande genomsnittliga beräkningen. Vi tillämpar sedan återstående viktning (1 minus utjämningsfaktorn) till de senaste perioderna. Eftersom de senaste perioderna prognos skapades baserat på tidigare perioder efterfrågan och de tidigare perioderna prognostiserade, vilket var baserat på efterfrågan på perioden före det och prognosen för perioden före det, vilket var baserat på efterfrågan på perioden före det och prognosen för perioden före det, vilket var baserat på perioden före det. Jo, du kan se hur alla tidigare perioder efterfrågan är representerade i beräkningen utan att faktiskt gå tillbaka och omberäkna någonting. Och det var det som körde den initiala populariteten för exponentiell utjämning. Det var inte för att det gjorde ett bättre jobb med utjämning än viktat glidande medelvärde, det berodde på att det var lättare att beräkna i ett datorprogram. Och för att du inte behövde tänka på vilken viktning som ska ge tidigare perioder eller hur många tidigare perioder du ska använda, som du skulle i viktat glidande medelvärde. Och eftersom det bara lät kallare än det viktade glidande genomsnittet. Det kan faktiskt argumenteras för att det vägda glidande medlet ger större flexibilitet eftersom du har större kontroll över vikten av tidigare perioder. Verkligheten är att någon av dessa kan ge tillförlitliga resultat, så varför inte gå med enklare och kallare ljud. Exponentiell utjämning i Excel Låt oss se hur det här verkligen skulle se ut i ett kalkylblad med reella data. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. I Figur 1A har vi ett Excel-kalkylblad med 11 veckors efterfrågan och en exponentiellt jämnprognos beräknad från den efterfrågan. Ive använde en utjämningsfaktor på 25 (0,25 i cell C1). Den nuvarande aktiva cellen är Cell M4 som innehåller prognosen för vecka 12. Du kan se i formellistan, formeln är (L3C1) (L4 (1-C1)). Så de enda direkta ingångarna till denna beräkning är de tidigare perioderna efterfrågan (Cell L3), de tidigare perioderna (Cell L4) och utjämningsfaktorn (Cell C1, som visas som absolut cellreferens C1). När vi börjar en exponentiell utjämningsberäkning, måste vi manuellt ansluta värdet för den första prognosen. Så i Cell B4, snarare än en formel, skrev vi bara in efterfrågan från samma period som prognosen. I Cell C4 har vi vår första exponentiella utjämningsberäkning (B3C1) (B4 (1-C1)). Vi kan sedan kopiera Cell C4 och klistra in den i cellerna D4 till M4 för att fylla resten av våra prognosceller. Du kan nu dubbelklicka på någon prognoscell för att se att den är baserad på tidigare perioder förutspådda cellen och de tidigare perioderna kräver cell. Så ärar varje efterföljande exponentiell utjämningsberäkning utgången från den tidigare exponentiella utjämningsberäkningen. Det är hur varje efterfrågad efterfrågan är representerad i de senaste perioderna, även om beräkningen inte direkt hänvisar till de tidigare perioderna. Om du vill bli snygg kan du använda Excels spåra prejudikatfunktion. För att göra detta klickar du på Cell M4, sedan på verktygsfältet för band (Excel 2007 eller 2010) klickar du på Formulas-fliken och klickar sedan på Trace Precedents. Det kommer att dra anslutningsledningar till 1: a nivået av prejudikat, men om du fortsätter att klicka på Spåraprecedenter kommer det att dra anslutningslinjer till alla tidigare perioder för att visa de ärftliga relationerna. Nu kan vi se vad exponentiell utjämning gjorde för oss. Figur 1B visar ett linjediagram över vår efterfrågan och prognos. Du kan se hur den exponentiellt släta prognosen avlägsnar det mesta av jaggednessen (hoppar runt) från den veckoslutande efterfrågan, men lyckas ändå att följa det som tycks vara en uppåtgående trend i efterfrågan. Du kommer också märka att den släta prognoslinjen tenderar att vara lägre än efterfrågan. Detta kallas trendslag och är en bieffekt av utjämningsprocessen. Varje gång du använder utjämning när en trend är närvarande kommer din prognos att ligga bakom trenden. Detta gäller för någon utjämningsteknik. Faktum är att om vi skulle fortsätta detta kalkylblad och börja skriva in lägre efterfrågningsnummer (vilket gör en nedåtgående trend) så ser du efterfrågan rad och trendlinjen flyttar över den innan vi börjar följa den nedåtgående trenden. Det var därför jag tidigare nämnde resultatet från exponentiell utjämningsberäkningen som vi kallar en prognos, behöver fortfarande lite mer arbete. Det finns mycket mer att prognostisera än att bara utjämna stötarna i efterfrågan. Vi behöver göra ytterligare justeringar för saker som trendlag, säsongshistoria, kända händelser som kan påverka efterfrågan etc. Men allt som ligger utanför ramen för denna artikel. Du kommer sannolikt också att gå in i termer som dubbel exponentiell utjämning och trippel-exponentiell utjämning. Dessa termer är lite vilseledande eftersom du inte omklämmer efterfrågan flera gånger (du kan om du vill, men det är inte meningen här). Dessa termer representerar exponentiell utjämning på ytterligare delar av prognosen. Så med enkel exponentiell utjämning, utjämnar du basbehovet, men med dubbel exponentiell utjämning utjämnar du basbehovet plus trenden, och med trippel exponentiell utjämning stryker du basbehovet plus trenden plus säsongsmässigheten. Den andra vanligaste frågan om exponentiell utjämning är var får jag min utjämningsfaktor Det finns inget magiskt svar här, du måste testa olika utjämningsfaktorer med dina efterfrågningsdata för att se vad som blir det bästa resultatet. Det finns beräkningar som automatiskt kan ställa in (och ändra) utjämningsfaktorn. Dessa faller under termen adaptiv utjämning, men du måste vara försiktig med dem. Det är helt enkelt inget perfekt svar och du ska inte blinda genomföra någon beräkning utan noggrann testning och utveckla en grundlig förståelse för vad den beräkningen gör. Du bör också köra scenarier för att se hur dessa beräkningar reagerar på efterfrågningsändringar som för närvarande inte existerar i efterfrågan data du använder för testning. Det dataexempel som jag använde tidigare är ett mycket bra exempel på en situation där du verkligen behöver testa några andra scenarier. Det specifika dataexemplet visar en något konsekvent uppåtgående trend. Många stora företag med mycket dyr prognostiseringsprogramvara fick stora problem i det inte så långa förflutet när deras programvaruinställningar som var tweaked för en växande ekonomi inte reagerade bra när ekonomin började stagnera eller krympa. Saker som detta händer när du inte förstår vad dina beräkningar (programvara) faktiskt gör. Om de förstod sitt prognossystem skulle de ha vetat att de behövde hoppa in och ändra något när det var plötsligt dramatiska förändringar i sin verksamhet. Så där har du det förklarat grunderna för exponentiell utjämning. Vill du veta mer om att använda exponentiell utjämning i en faktisk prognos, kolla in min bok Inventory Management Explained. kopiera upphovsrätt. Innehållet på InventoryOps är upphovsrättsskyddat och är inte tillgängligt för republicering. Dave Piasecki. är ägare av Inventory Operations Consulting LLC. ett konsultföretag som tillhandahåller tjänster relaterade till lagerhantering, materialhantering och lagerverksamhet. Han har över 25 års erfarenhet av verksamhetshantering och kan nås via sin webbplats (lager), där han behåller ytterligare relevant information. Mitt företag
Comments
Post a Comment